Menger probabilistic normed space is a category topological vector space

Authors

  • Ildar Sadeqi Department of Mathematics, Faculty of Science, Sahand University of Technology, Tabriz, Iran.
Abstract:

In this paper, we formalize the Menger probabilistic normed space as a category in which its objects are the Menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. Then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. So, we can easily apply the results of topological vector spaces in probabilistic normed spaces.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

menger probabilistic normed space is a category topological vector space

in this paper, we formalize the menger probabilistic normed space as a category in which its objects are the menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. so, we can easily apply the results of topological vector spaces...

full text

Some properties of continuous linear operators in topological vector PN-spaces

The notion of a probabilistic metric  space  corresponds to thesituations when we do not know exactly the  distance.  Probabilistic Metric space was  introduced by Karl Menger. Alsina, Schweizer and Sklar gave a general definition of  probabilistic normed space based on the definition of Menger [1]. In this note we study the PN spaces which are  topological vector spaces and the open mapping an...

full text

Topological Properties of Real Normed Space

In this article, we formalize topological properties of real normed spaces. In the first few parts, open and closed, density, separability and sequence and its convergence are discussed. Then we argue properties of real normed subspace. In the middle of the article, we discuss linear functions between real normed speces. Several kinds of subspaces induced by linear functions such as kernel, ima...

full text

Lacunary Ideal Convergence in Probabilistic Normed Space

Abstract. The aim of this paper is to study the notion of lacunary I-convergence in probabilistic normed spaces as a variant of the notion of ideal convergence. Also lacunary I-limit points and lacunary I-cluster points have been defined and the relation between them has been established. Furthermore, lacunary Cauchy and lacunary I-Cauchy sequences are introduced and studied. Finally, we provid...

full text

GRADUAL NORMED LINEAR SPACE

In this paper, the gradual real numbers are considered and the notion of the gradual normed linear space is given. Also some topological properties of such spaces are studied, and it is shown that the gradual normed linear space is a locally convex space, in classical sense. So the results in locally convex spaces can be translated in gradual normed linear spaces. Finally, we give an examp...

full text

BEST APPROXIMATION SETS IN -n-NORMED SPACE CORRESPONDING TO INTUITIONISTIC FUZZY n-NORMED LINEAR SPACE

The aim of this paper is to present the new and interesting notionof ascending family of  $alpha $−n-norms corresponding to an intuitionistic fuzzy nnormedlinear space. The notion of best aproximation sets in an  $alpha $−n-normedspace corresponding to an intuitionistic fuzzy n-normed linear space is alsodefined and several related results are obtained.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 03  issue 2

pages  25- 32

publication date 2016-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023